DRAW WIRE SENSOR

Links to further documents for this series: Installation guide Manual for CANopen Teach electronics Squeezer Data sheet TEDS connector

WayCon

MH60 SERIES

Key-F	eat	ures
-------	-----	------

- Cost-effective sensor for construction machinery and mobile hydraulics

WayCon

10

- Extreme robust construction
- Three housing variations for different environments
- Measurement ranges from 1 to 4 m
- Linearity up to ±0.1 % of full scale
- Output signals: potentiometer, current, voltage or CANopen, optional redundant output
- Teachable outputs: 0...5 V, 0...10 V
- Protection class up to IP69K (suitable for steam and high pressure cleaning)
- Temperature range -20...+85 °C (optional -40 °C)
- Optional with TEDS connector

Technical Data	2
Analog Outputs	
Digital Output CANOPEN	
Technical Drawing	
Options	
Accessories	
Applications	
Order Code	

Content

TECHNICAL DATA

Measurement range	[m]	1 1.5			2 2.5			3		3.5		4								
Draw wire diameter	[mm]	0.5	0.7	1	0.5	0.7	1	0.5	0.7	1	0.5	0.7	1	0.5	0.7	1	0.5	0.7	0.5	0.7
Linearity	[±%]		0.5			0.5		0	.5	1	0.5		1	0.5	1	1	0.5	1	0.5	1
Improved linearity L25 1)		√	\checkmark	\checkmark	√	\checkmark	√	\checkmark	\checkmark	-	√	-	-	√	-	-	-	-	-	-
Improved linearity L10 ¹⁾		√	√	\checkmark	√	\checkmark	\checkmark	√	\checkmark	-	\checkmark	-	-	V	-	-	-	-	-	-
Resolution										see	outp	ut typ	es be	low						
Sensor element			potentiometer																	
Output signals ²⁾		po	potentiometer / 0.54.5 V / 05 V / -5+5 V / 010 V / 05 V (teachable) / 010 V (teachable) / 420 mA / CANopen							Nopen										
Redundant output signals			optional for: potentiometer / 0.54.5 V / 05 V / -5+5 V / 010 V / 420 mA / CANopen																	
Connection		axial connector output M12 or axial cable output (TPE cable)																		
Protection class		IP67, optional IP69K (only in combination with cable output)																		
Humidity		max. 90 % relative, no condensation																		
Operating temperature										see	e outp	ut typ	es be	low						
Rope extraction speed	[m/s]										I	max. 3	3							
Acceleration	[m/s ²]										n	nax. 5	0							
Extraction force	[N]	approx. 4 up to 6																		
Housing										alum	inium	, sprir	ig cas	e PA6						
Draw wire								:	stainle	ss ste	el V4A	A with	synth	netic c	oating	9				
Weight	[g]						up	to app	orox. 5	00 (d	epend	ling o	n the	measu	ureme	ent rar	nge)			

¹⁾ Options L25 and L10 not in combination with options S1 and S2. Changed technical drawing see page 4. The row show the possible combinations of improved linearity, measurement range and draw wire diameter. $\sqrt{}$ = combination possible - = combination not possible

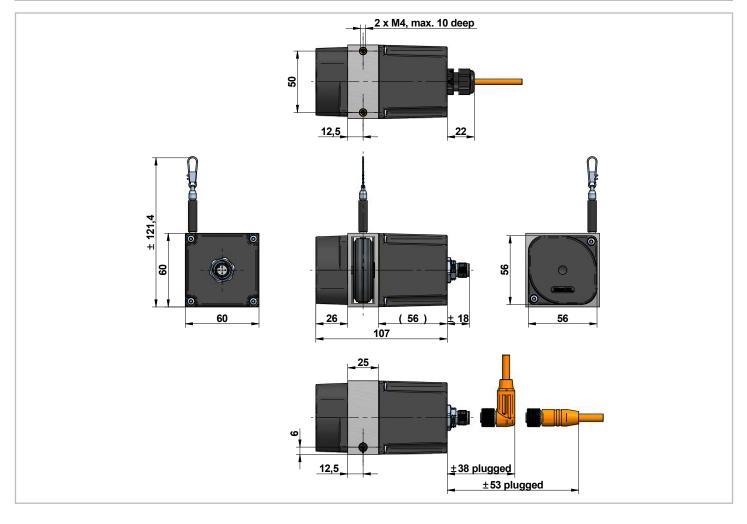
Sensors with improved linearity are delivered with calibration protocol. ²⁾ other output signals on request

ANALOG OUTPUTS

Output type	Po	otentiome	ter		Volt	age 1)		Current	Voltage (†	teachable)
Order Code	1R	5R	10R	4,5V	5V	55V	10V	420A	5VT	10VT
Output	1 kΩ	5 kΩ	10 kΩ	0.54.5 V	05 V	-5+5 V	010 V	420 mA	05 V	010 V
Supply		max. 30 V			830 VDC		1230 VDC	1230 VDC 2)	83	5 VDC
Recommended cursor current		<1 µA					-			
Current consumption max.		-			max. 25 m	nA (no load)			-	
Power consumption max.					-				max. 2	00 mW
Output current		-		m	nax. 10 mA, r	nin. load 10	kΩ	max. 50 mA in case of error ³⁾		10 mA, ad 1 kΩ
Dynamics		-		<3 m	ns from 010	00 % and 100	00 %	<1 ms from 0100 % and 1000 %	1	ms
Resolution				theoretically	unlimited,	limited by th	e noise		1	mV
Noise		ls on the q power sup			0.5	mV _{eff}		1.6 μA _{eff}	2 n	nV _{eff}
Inverse-polarity protection		-				у	es			-
Short-circuit proof		-			У	res		-	у	es
Operating temperature					-20+	85 °C / optio	nal: -40+85 °	C		
Temperature coefficient	÷	±0.0025 %/	К		0.003	37 %/K		0.0079 %/K	0.001	6 %/K
EMC		-				ac	ccording to EN	61326-1:2013		
Circuit	<u>+</u>	V Cursor GI V V +V +V +V			+V	GND_signal		+V Signal	Signa +V	

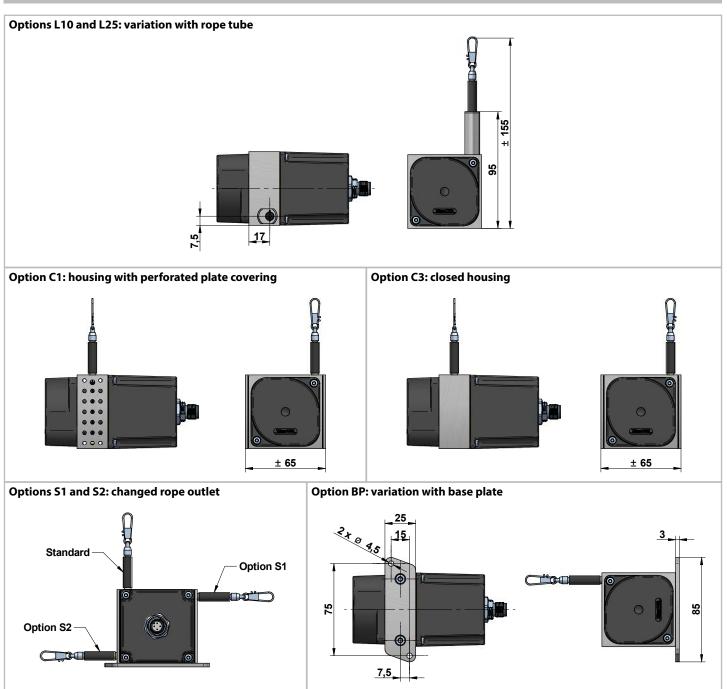
¹⁾ Galvanically isolated

²⁾ Load: 250 Ω (max. 500 Ω)


 $^{\scriptscriptstyle 3)}$ Load max. 0.5 k Ω

MFL = multi-functional line

DIGITAL OUTPUT CANOPEN


Link to the manual		CANopen (WCAN)
CAN specification		Full CAN 2.0B (ISO11898)
Communication profile		CANopen CiA 301 V 4.2.0
Device profile		Encoder, absolute linear; CIA 406 V 3.2.0
Error control		Producer Heartbeat, Emergency Message, Node Guarding
Node ID		Default: 7, configurable via SDO
PDO		1 x TPDO, static mapping
PDO Modes		Event-triggered, Time-triggered, Sync-cyclic, Sync-acyclic
Transmission rate		1 Mbps, 800, 500, 250, 125, 50, 20 kbps configurable via SDO
Integrated Bus termination resistor		120 Ω , connectible via SDO
Bus, galvanic separation		No
Supply	[VDC]	830
Current consumption		10 mA typical at 24 V, 20 mA typical at 12 V
Measurement rate		1 kHz with 16-bit resolution
Repeatability		equal to the linearity
Resolution		0.002 % of measurement range
Electrical protection		inverse polarity protection
Operating temperature	[°C]	-20+85 / optional: -40+85
Temperature coefficient	[%/K]	0.0014
EMC		DIN EN61326-1:2013, conformity with directive 2014/30/EU

TECHNICAL DRAWING

TECHNICAL DRAWING - VARIATIONS

OPTIONS

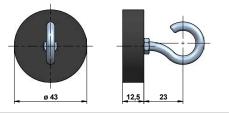
Option	Order code	Description	
Improved linearity	L10, L25	Improved linearity 0.1 % (L10) or 0.25 % (L25).	
(not in combination with S1 or S2; possible combinations see page 2)	210, 225	Changed technical drawing see <u>page 4</u> .	
Inverted output signal (analog output only)	IN	The analog signal of the sensor is increasing by extracting the rope (standard). Option IN inverts the signal, i.e. the signal of the sensor declines by extracting the rope.	inverted
Redundant output signal	R1, R2, R3, R4	By using a double potentiometer the sensor delivers two i R1: 2 x potentiometer output R2: 2 x voltage output R3: 2 x current output R4: 2 x CANopen	ndependent output signals.
Changed rope outlet (only in combination with C1 or C3; drawing see <u>page 4</u>)	S1, S2	Standard: rope outlet at the top S1: rope outlet on the right side S2: rope outlet on the left side	
Sensor housing (drawing see <u>page 4</u>)	C1, C3	Standard: open housing (Especially suited for applications un C1: housing with perforated plate covering (Especially suite dirt, particle size >2 mm and fluids.) C3: closed housing (Especially suited for applications under concrete, clay, protection against impact and shock.)	d for applications under the conditions of
Wire rope diameter	D05K, D07K, D10K	The wire rope is made of V4A stainless steel, 1.4401 with a s rope diameter in part two of the order code. D05K: Ø 0.5 mm (standard) D07K: Ø 0.7 mm D10K: Ø 1 mm (not with measurement ranges 3.5 m and 4	
Rope fixation by M4 thread	M4	thread M4, length 22 mm. Ideal for attachment to through holes or thread holes M4.	clip with drill tion (standard)
Rope fixation with cylindrical pin and M6 through bore	ZH, ZR	ZH: cylindrical pin with M6 through bore ZR: cylindrical pin with M6 through bore and carbine ring	
Protection class IP69K (only in combination with cable output)	IP69	All relevant components are completely encapsulated. Su high temperature spray downs.	itable for close-range high pressure or
Increased temperature range Low	T40	The use of special components allow a working temperatu	re down to -40 °C (up to +85 °C).
TEDS connector (in combination with analog and cable output only; more information about <u>TEDS</u>)	TD, TDP, TDPS	TD: Assembling TDP: Assembling + programming TDPS: Assembling + programming + 35 measurement poi	nts
Base plate	BP	The MH60 is equipped with a base plate.	

ACCESSORIES

Teach electronics - Squeezer

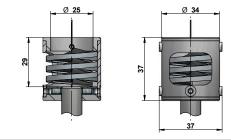
Draw wire sensors with the analogue output versions 5VT and 10VT are equipped with teachable, internal electronics, called VT-Electronics. The signals provided by the sensor's potentiometer are digitized by the VT-Electronics. This digital information is first processed by the electronics, then transformed back and given out as an analogue output signal 0 to 5 V or 0 to 10 V.

- The digitization offers two possibilities of adjustment, by which the sensor can be configured individually using the Squeezer:
- Teaching of the measurement range. After a successful teaching process, the squeezer can be pulled off the sensor and be replaced by a standard cable or connector.
- Setting an individual switching point. The squeezer allows the setting of an individual switching point open collector. The switching signal is emitted through the multi-functional line MFL.


SV1-XXXX: rope extension (150...4995 mm) SV2-XXXX: rope extension (5000...19995 mm)

SV3-XXXX: rope extension (20000...40000 mm)

Magnetic clamp - MGG1


Use the magnetic clamp to quickly attach the rope to metallic objects without any assembly time. A rubber coating provides gentle contact (e. g. on varnished surfaces) and prevents from slipping due to vibration.

The magnet consists of a neodym core for an increased adhesive force of 260 N. The hook makes it easy to attach the rope clip.

Rope cleaner - RCS (options L10 and L25 only)

Use the RCS rope cleaner to remove dirt from the measuring rope of the sensor. Please note that the maximum measuring range of the sensor is reduced by 29 mm.

APPLICATIONS

The draw wire sensors of the mobile hydraulic series MH were specially developed for the demanding area of construction machines and construction equipment. The sensor can be individually configured depending on the application, in which it is used. Small adhesive and abrasive particles with small grain size can easily be removed when using the open MH versions. Seawater resistant protective grating provide a maximum protection against larger foreign objects like tree branches. In case of applications with high safety requirements, thicker stainless-steel wire ropes are available, as well as redundant, analogue outputs. This mobile hydraulics series offers the possibility the perform accurate and cost-effective distance measurement on construction machinery.

ORDER CODE

	MH6	5 0 – L_	J−Ļ	J-L	┛᠆└	
ange MR [m]		1				
-						
		1				
(Standard)	D05K					
	D07K					
not MR 3.54)	D10K					
		1				
1 kΩ	1R					
5 kΩ	5R					
10 kΩ	10R					
0.54.5 V	4,5V					
05 V	5V					
-55 V	55V					
010 V	10V					
05 V (teachable)	5VT					
010 V (teachable)	10VT					
420 mA	420A					
CANopen	WCAN					
		1				
it M12, axial, 4 pole 1)	SA12					
	KA02					
	KA05					
	KA10					
		1				
	-					
ons	0					
	5 kΩ 10 kΩ 0.54.5 V 05 V -55 V 010 V 05 V (teachable) 010 V (teachable) 420 mA	ange MR [m] J $3.5 / 4$ D05K n (Standard) D07K not MR 3.54) D10K 1 kΩ 1R 5 kΩ 5R 10 kΩ 10R 0.54.5 V 4,5V 05 V 5V -55 V 55V 010 V 10V 05 V (teachable) 5VT 010 V (teachable) 5VT 010 V (teachable) 5VT 010 V (teachable) 5VT 10VT 420A KANopen KA02 al, 2 m ¹⁰ KA05 al, 10 m ^{11, 2)} KA10	$\frac{1}{3.5 / 4}$ (Standard) D05K D07K D07K D10K 1 kΩ 1R 5 kΩ 5R 10 kΩ 10R 0.54.5 V 4,5V 05 V 5V -55 V 55V 010 V 10V 05 V (teachable) 5VT 010 V (teachable) 5VT 010 V (teachable) 10VT 420 mA 420A CANopen WCAN tt M12, axial, 4 pole ¹⁾ SA12 KA02 ial, 2 m ¹⁾ KA05 ial, 10 m ^{1), 2)}	ange MR [m] J $(3.5 / 4)$ D05K n (Standard) D05K not MR 3.54) D07K 1 kΩ 1R 5 kΩ 5R 10 kΩ 10R 0.54.5 V 4,5V 05 V 5V -55 V 55V 010 V 10V 05 V (teachable) 5VT 010 V (teachable) 10VT 420 mA 420A CANopen WCAN tt M12, axial, 4 pole ¹⁾ SA12 ial, 2 m ¹⁾ KA02 ial, 10 m ^{1), 2)} KA10	ange MR [m] J $(3.5 / 4)$ D05K n (Standard) D07K not MR 3.54) D10K 1 kΩ 1R 5 kΩ 5R 10 kΩ 10R 0.54.5 V 4,5V 05 V 5V -55 V 55V 010 V 10V 05 V (teachable) 5VT 010 V (teachable) 10VT 420 mA 420A CANopen WCAN tt M12, axial, 4 pole ¹⁾ SA12 ial, 2 m ¹⁾ KA02 ial, 5 m ¹⁾ KA05 ial, 10 m ^{1), 2)} KA10	ange MR [m] Dosk $0/3.5/4$ Dosk h (Standard) SR h (Standard) SV h (Standard) SV h (Standard) SV h (Standard) SVT h (Standard) SVT h (Standard) SA12 (All (Standard)) KA02 (All (Standard)) KA05 (All (Standard)) KA05 (All (Standard)) SA12 (

¹⁾ 4 pole in combination with analog outputs

5 pole in combination with WCAN or option R4

²⁾ larger lengths on request
 ³⁾ possible combination for improved linearity see page 2
 ⁴⁾ only in combination with C1 or C3

⁵⁾ for more information about TEDS connectors see <u>here</u>

Bold text: standard with shorter lead time

Option	Description (see <u>page 5</u>)
L10	Improved linearity ±0.1 % $^{3)}$
L25	Improved linearity ±0.25 % $^{3)}$
IN	Inverted output signal
R1	Redundant potentiometer output
R2	Redundant voltage output
R3	Redundant current output
R4	Redundant CANopen output
S1	Rope outlet on the right side $^{4)}$
S2	Rope outlet on the left side 4)
C1	Perforated plate covering
C3	Closed housing
M4	Rope fixation M4
ZH	Cylindrical pin
ZR	Cylindrical pin with carbine ring
IP69	Protection IP69K, only cable output
T40	Temperature range -40+85 °C
TD	TEDS: assembling ⁵⁾
TDP	TEDS: assembling + programming ⁵⁾
TDPS	TEDS: assembling + programming +
	35 measurement points ⁵⁾
BP	Version with base plate
Option	Not combinable with
L10	See page 2, S1, S2, T40
L25	See page 2, S1, S2, T40
IN	WCAN
S1	S2, L10, L25
S2	S1, L10, L25
M4	ZH, ZR
ZH	M4, ZR
ZR	M4, ZH
IP69	SA12
T40	L10, L25
TD	1R, 5R, 10R, WCAN, R1, R2, R3, R4, SA12
TDP	1R, 5R, 10R, WCAN, R1, R2, R3, R4, SA12
TDPS	1R, 5R, 10R, WCAN, R1, R2, R3, R4, SA12

GENERAL ACCESSORIES

SQUEEZER2M	accessory for VT output, 2 m cable	SV1-XXXX	rope extension (150 mm up to 4995 mm)
SQUEEZER5M	accessory for VT output, 5 m cable	SV2-XXXX	rope extension (5000 mm up to 19995 mm)
SQUEEZER10M	accessory for VT output, 10 m cable	SV3-XXXX	rope extension (20000 mm up to 40000 mm)
UR2	deflection pulley (for rope diameter 0.5 mm)	RCS-MH60 1)	rope cleaner (only usable with option L10 or L25)
MGG1	magnetic clamp		

¹⁾ please note that the maximum measuring range is reduced by 29 mm when using the rope cleaner

ACCESSORIES CABLES AND CONNECTORS

2 m, straight connector 5 m, straight connector	K8P2M-S-M12	2 m, straight connector
5 m, straight connector	100000 A 4440	
	K8P5M-S-M12	5 m, straight connector
10 m, straight connector	K8P10M-S-M12	10 m, straight connector
2 m, angular connector	K8P2M-SW-M12	2 m, angular connector
5 m, angular connector	K8P5M-SW-M12	5 m, angular connector
10 m, angular connector	K8P10M-SW-M12	10 m, angular connector
emale) M12, 4 poles, for self assembly	Mating connector	(female) M12, 8 poles, for self assembly
straight connector	D8-G-M12-S	straight connector
angular connector	D8-W-M12-S	angular connector
v (famala) M12 5 palas shialdad ID67	Connection coble	encor to Squeezer (female to male)
(lemale) w12, 5 poles, sillelaed, iP07	connection caples	ensor to squeezer (remaie to male)
2 m, straight connector	K4P1,5M-SB-M12	1.5 m, shielded, 4 poles ¹⁾
2 m, angular connector		
VT and 10 VT		
	5 m, angular connector 10 m, angular connector female) M12, 4 poles, for self assembly straight connector angular connector or (female) M12, 5 poles, shielded, IP67 2 m, straight connector	5 m, angular connector K8P5M-SW-M12 10 m, angular connector K8P10M-SW-M12 female) M12, 4 poles, for self assembly Mating connector straight connector D8-G-M12-S angular connector D8-W-M12-S or (female) M12, 5 poles, shielded, IP67 Connection cable s 2 m, straight connector K4P1,5M-SB-M12

ACCESSORIES DISPLAYS

WAY-AX-S touch screen, supply: 18...30 VDC

WAY-AX-AC touch screen, supply: 115...230 VAC

For more information and options please refer to the WAY-AX data sheet.

WayCon Positionsmesstechnik GmbHEmail:info@waycon.deInternet:www.waycon.biz

Headquarters Munich Mehlbeerenstr. 4 82024 Taufkirchen Tel. +49 (0)89 67 97 13-0 Fax +49 (0)89 67 97 13-250 Subject to change without prior notice.

 Office Cologne

 Auf der Pehle 1

 50321 Brühl

 Tel.
 +49 (0)2232 56 79 44

 Fax
 +49 (0)2232 56 79 45